Aims: There are marked inequities in clinical outcomes and rates of diabetes technology use among youth with type 1 diabetes (T1D). The quantitative data from our mixed methods cohort study identified significant improvements in glycaemia and quality of life in participants. We aimed to use qualitative methods to provide further insight into our quantitative findings in the setting of underlying health disparities.
Methods: Fifteen publicly insured, insulin pump-naïve non-Hispanic Black youth aged 6-21 years with T1D and baseline haemoglobin A1c (HbA1c) ≥86 mmol/mol (10%) and their parents participated in a mixed methods cohort study. Semi-structured interviews were conducted separately with parents and youth after completion of 6 months of HCL use. Three topic areas were explored: (1) Experience using HCL, (2) barriers to HCL and (3) facilitators to accessing HCL. Semantic content analysis and consensus coding involving two team members were used to generate themes. Thematic saturation was achieved.
Results: Youth (Medianage 14.9 years, 67% female) and parents (92% female) were interviewed. Youth and their parents reported that access to HCL provides a new outlook on living with T1D, although managing T1D is still hard. They felt that diabetes technology is most helpful for those struggling with management. Participants experienced barriers to access including misconceptions of HCL systems, clinician bias and systemic racism. They suggested these barriers can be overcome by offering diabetes technology education for all people with T1D, increasing awareness of HCL in the community and providing resources to overcome barriers created by social determinants of health.
Conclusions: The voices of historically minoritised youth with suboptimal T1D control and their parents provide important, previously unreported experiences and perspectives on barriers and facilitators to using HCL that will shape interventions to improve equity in access to diabetes technology.
Keywords: continuous glucose monitoring; healthcare disparities; insulin infusion systems; paediatrics; qualitative research; technology; type 1 diabetes.
© 2024 Diabetes UK.