MAPK13 controls structural remodeling and disease after epithelial injury

bioRxiv [Preprint]. 2024 Aug 10:2024.05.31.596863. doi: 10.1101/2024.05.31.596863.

Abstract

All living organisms are charged with repair after injury particularly at epithelial barrier sites, but in some cases this response leads instead to structural remodeling and long-term disease. Identifying the molecular and cellular control of this divergence is key to disease modification. In that regard, stress kinase control of epithelial stem cells is a rational entry point for study. Here we examine the potential for mitogen-activated protein kinase 13 (MAPK13) regulation of epithelial stem cells using models of respiratory viral injury and post-viral lung disease. We show that Mapk13 gene-knockout mice handle acute infectious illness as expected but are protected against structural remodeling manifest as basal-epithelial stem cell (basal-ESC) hyperplasia-metaplasia, immune activation, and mucinous differentiation. In corresponding cell models, Mapk13-deficiency directly attenuates basal-ESC growth and organoid formation. Extension to human studies shows marked induction/activation of basal-cell MAPK13 in clinical samples of comparable remodeling found in asthma and COPD. Here again, MAPK13 gene-knockdown inhibits human basal-ESC growth in culture. Together, the data identify MAPK13 as a control for structural remodeling and disease after epithelial injury and as a suitable target for down-regulation as a disease-modifying strategy.

Keywords: asthma; chronic obstructive pulmonary disease (COPD); epithelial stem cell; mitogen-activated protein kinase (MAPK); p38 kinase; respiratory viral infection.

Publication types

  • Preprint