A novel methylation signature predicts extreme long-term survival in glioblastoma

J Neurooncol. 2024 Sep;169(2):341-347. doi: 10.1007/s11060-024-04741-z. Epub 2024 Jun 19.

Abstract

Purpose: Glioblastoma (GBM) is the most common malignant primary brain tumor with a dismal prognosis of less than 2 years under maximal therapy. Despite the poor prognosis, small fractions of GBM patients seem to have a markedly longer survival than the vast majority of patients. Recently discovered intertumoral heterogeneity is thought to be responsible for this peculiarity, although the exact underlying mechanisms remain largely unknown. Here, we investigated the epigenetic contribution to survival.

Methods: GBM treatment-naïve samples from 53 patients, consisting of 12 extremely long-term survivors (eLTS) patients and 41 median-term survivors (MTS) patients, were collected for DNA methylation analysis. 865 859 CpG sites were examined and processed for detection of differentially methylated CpG positions (DMP) and regions (DMR) between both survival groups. Gene Ontology (GO) and pathway functional annotations were used to identify associated biological processes. Verification of these findings was done using The Cancer Genome Atlas (TCGA) database.

Results: We identified 67 DMPs and 5 DMRs that were associated with genes and pathways - namely reduced interferon beta signaling, in MAPK signaling and in NTRK signaling - which play a role in survival in GBM.

Conclusion: In conclusion, baseline DNA methylation differences already present in treatment-naïve GBM samples are part of genes and pathways that play a role in the survival of these tumor types and therefore may explain part of the intrinsic heterogeneity that determines prognosis in GBM patients.

Keywords: DNA-methylation; Epigenetics; Glioblastoma; Long-term survival.

MeSH terms

  • Adult
  • Aged
  • Biomarkers, Tumor / genetics
  • Brain Neoplasms* / genetics
  • Brain Neoplasms* / mortality
  • CpG Islands
  • DNA Methylation*
  • Epigenesis, Genetic
  • Female
  • Gene Expression Regulation, Neoplastic
  • Glioblastoma* / genetics
  • Glioblastoma* / mortality
  • Humans
  • Male
  • Middle Aged
  • Prognosis
  • Survival Rate

Substances

  • Biomarkers, Tumor