Speciation, phytoavailability, and accumulation of toxic elements and sulfur by humic acid-fertilized lemongrass and common sage in a sandy soil treated with heavy oil fly ash: A trial for management of power stations wastes

Sci Total Environ. 2024 Oct 1:945:173998. doi: 10.1016/j.scitotenv.2024.173998. Epub 2024 Jun 18.

Abstract

Globally, power stations generate huge amounts of the hazardous waste heavy oil fly ash (HOFA), which is rich in Ni, V, Fe, S, and dumped into landfills. Thus, exploring new approaches for a safe recycling and sustainable management of HOFA is needed and of great environmental interest. The potential application of HOFA as an amendment to sandy soils has not been studied yet. This is the first research investigating the potentiality of using HOFA as a soil conditioner. To this end, we conducted a greenhouse experiment in order to investigate the impacts of HOFA addition (1.2, 2.4, 3.6 t ha-1) to sandy soil on the total and available content of nutrients (e.g., S, Fe, Mn, Cu, Zn) and toxic elements (TEs; e.g., Cd, Co, Cr, Ni, Pb, V) in the soil and their phytoextraction and translocation by lemongrass (Cymbopogon citratus) and common sage (Salvia officinalis). We also assessed the impact of humic acid (HA) foliar application (50 and 100 l ha-1) on the growth and elements accumulation by the two plants. The studied HOFA was acidic and highly enriched in S (43,268.0), V (3,527.0), Ni (1774.0), and Fe (15,159.0) (units in mg kg-1). The X-ray absorption near edge structure (XANES) data showed that V in HOFA was composed primarily of V(IV) sorbed onto goethite, V(V) sorbed onto humic substances, in the forms of V2O3, and VCl4. Addition of the lower doses of HOFA (1.2 and 2.4 t ha-1) did not change significantly soil pH, salinity, and the total and available elements content compared to the unamended soil. Although the elements content in the 3.6 t ha-1 HOFA-treated soil was significantly higher than the untreated, the total content of all elements (except for Ni) was lower than the maximum allowable concentrations in soils. HOFA addition, particularly in the highest dose (3.6 t ha-1), decreased significantly the growth and biomass of both plants. Common sage accumulated more elements than lemongrass; however, the elements content in the plants was lower than the critical concentrations for sensitive plants. The foliar application of humic acid enhanced significantly the plant growth and increased their tolerance to the HOFA-induced stress. We conclude that the addition of HOFA up to 2.4 t ha-1 in a single application as amendment to sandy soils is not likely to create any TE toxicity problems to plants, particularly if combined with a foliar application of humic acid; however, repeated additions of HOFA may induce toxicity. These findings should be verified under field conditions.

Keywords: Degraded soils; Fly ash management; Phytoextraction; Power station wastes; Toxic metals.

MeSH terms

  • Coal Ash*
  • Cymbopogon
  • Fertilizers
  • Humic Substances*
  • Metals, Heavy / analysis
  • Soil Pollutants* / analysis
  • Soil* / chemistry
  • Sulfur

Substances

  • Humic Substances
  • Coal Ash
  • Soil Pollutants
  • Soil
  • Fertilizers
  • Sulfur
  • Metals, Heavy