Multiple congenital anomalies-hypotonia-seizures syndrome 3 (MCAHS3) results from mutations in the phosphatidylinositol glycan biosynthesis class T (PIGT) gene leading to defects in glycosylphosphatidylinositol transamidase complex (GPI-TA) synthesis. Glycosylphosphatidylinositol serves as an anchor to more than 150 mammalian proteins for attachment on cell surfaces, enabling specific functional properties. Mutations in the PIGT gene result in disruption of this extremely important post-translational protein modification, yielding dysfunctional proteins leading to MCAHS3. An exhaustive literature search was conducted across various electronic databases to reveal only 41 reported cases of MCAHS3 worldwide, emphasizing the rarity of this condition. Multiple congenital anomalies-hypotonia-seizures syndrome 3 has been reported as secondary to 18 different known PIGT variants to date, manifesting as a varying spectrum of craniofacial dysmorphism, developmental delay with epilepsy, cardiac and renal malformations, and unique features in biochemical testing and neuroimaging. This review aims to highlight the constellation of clinical symptoms, diagnostic modalities, and management challenges associated with MCAHS3 cases. It would help determine optimal diagnostic and treatment strategies for newly identified cases and facilitate new research on this rare condition.
Keywords: craniofacial dysmorphism; gpi deficiency; mcahs3; multiple congenital anomalies-hypotonia-seizures syndrome 3; pediatric seizure disorder; pigt.
Copyright © 2024, Ranjan et al.