Synthesis, Invitro Cytotoxic Activity and Optical Analysis of Substituted Schiff Base Derivatives

J Fluoresc. 2024 Jun 24. doi: 10.1007/s10895-024-03803-9. Online ahead of print.

Abstract

Fluorescent cytotoxic compounds with readout delivery are crucial in chemotherapy. The growing demands of these treatment strategies require the novel heterocyclic molecules with better selectivity alongside fluorescence marker potential. In this context, a series of nine isatin Schiff base derivatives 4a-i were synthesized, characterized and evaluated for UV-visible, fluorescence, thermal and bioanalysis in order to explore the effect of structure on their bioprofiles. The analogue 4d exhibited maximum cytotoxic activity on Hella cells with percentage inhibition of 83% at 50 µM and 100% at 150 µM concentrations while 4c showed minimum cytotoxic activity with the value of 19% at 50 µM and 22% at 150 µM concentrations. Meanwhile, 4g was found to exhibit maximum inhibition potential towards Vero Cells with the percentage inhibition values of 83 at 50 µM concentration. The overall SAR study showed that the para-fluoro-substituted isatin moieties exhibited the appreciable percentage inhibition while the least activity was delivered by the isatin derivatives with para-bromo substitution.

Keywords: Cytotoxicity; Imine; Isatin; MO; Optical; Percent Inhibition; TGA.