High-Frequency, 2-mm-Diameter Forward-Viewing 2-D Array for 3-D Intracoronary Blood Flow Imaging

IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Aug;71(8):1051-1061. doi: 10.1109/TUFFC.2024.3418708. Epub 2024 Aug 19.

Abstract

Coronary artery disease (CAD) is one of the leading causes of death globally. Currently, diagnosis and intervention in CAD are typically performed via minimally invasive cardiac catheterization procedures. Using current diagnostic technology, such as angiography and fractional flow reserve (FFR), interventional cardiologists must decide which patients require intervention and which can be deferred; 10% of patients with stable CAD are incorrectly deferred using current diagnostic best practices. By developing a forward-viewing intravascular ultrasound (FV-IVUS) 2-D array capable of simultaneously evaluating morphology, hemodynamics, and plaque composition, physicians would be better able to stratify risk of major adverse cardiac events in patients with intermediate stenosis. For this application, a forward-viewing, 16-MHz 2-D array transducer was designed and fabricated. A 2-mm-diameter aperture consisting of 140 elements, with element dimensions of 98×98×70 μ m ( w×h×t ) and a nominal interelement spacing of 120 μ m, was designed for this application based on simulations. The acoustic stack for this array was developed with a designed center frequency of 16 MHz. A novel via-less interconnect was developed to enable electrical connections to fan-out from a 140-element 2-D array with 120- μ m interelement spacing. The fabricated array transducer had 96/140 functioning elements operating at a center frequency of 16 MHz with a -6-dB fractional bandwidth of 62% ± 7 %. Single-element SNR was 23 ± 3 dB, and the measured electrical crosstalk was - 33 ± 3 dB. In imaging experiments, the measured lateral resolution was 0.231 mm and the measured axial resolution was 0.244 mm at a depth of 5 mm. Finally, the transducer was used to perform 3-D B-mode imaging of a 3-mm-diameter spring and 3-D B-mode and power Doppler imaging of a tissue-mimicking phantom.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Coronary Artery Disease / diagnostic imaging
  • Coronary Circulation / physiology
  • Coronary Vessels / diagnostic imaging
  • Equipment Design*
  • Humans
  • Imaging, Three-Dimensional / methods
  • Phantoms, Imaging*
  • Transducers*
  • Ultrasonography, Interventional* / instrumentation
  • Ultrasonography, Interventional* / methods