Origins of noise in both improving and degrading decision making

bioRxiv [Preprint]. 2024 Nov 23:2024.03.26.586597. doi: 10.1101/2024.03.26.586597.

Abstract

Noise is a fundamental problem for information processing in neural systems. In decision-making, noise is thought to cause stochastic errors in choice. However, little is known about how noise arising from different sources may contribute differently to value coding and choice behaviors. Here, we examine how noise arising early versus late in the decision process differentially impacts context-dependent choice behavior. We find in model simulations that under early noise, contextual information enhances choice accuracy, while under late noise, context degrades choice accuracy. Furthermore, we verify these opposing predictions in experimental human choice behavior. Manipulating early and late noise - by inducing uncertainty in option values and controlling time pressure - produces dissociable positive and negative context effects. These findings reconcile controversial experimental findings in the literature, suggesting a unified mechanism for context-dependent choice. More broadly, these findings highlight how different sources of noise can interact with neural computations to differentially modulate behavior.

Significance: The current study addresses the role of noise origin in decision-making, reconciling controversies around how decision-making is impacted by context. We demonstrate that different types of noise - either arising early during evaluation or late during option comparison - leads to distinct results: with early noise, context enhances choice accuracy, while with late noise, context impairs it. Understanding these dynamics offers potential strategies for improving decision-making in noisy environments and refining existing neural computation models. Overall, our findings advance our understanding of how neural systems handle noise in essential cognitive tasks, suggest a beneficial role for contextual modulation under certain conditions, and highlight the profound implications of noise structure in decision-making.

Publication types

  • Preprint