Fluctuation Theorems for Heat Exchanges between Passive and Active Baths

Entropy (Basel). 2024 May 23;26(6):439. doi: 10.3390/e26060439.

Abstract

In addition to providing general constraints on probability distributions, fluctuation theorems allow us to infer essential information on the role played by temperature in heat exchange phenomena. In this numerical study, we measure the temperature of an out-of-equilibrium active bath using a fluctuation theorem that relates the fluctuations in the heat exchanged between two baths to their temperatures. Our setup consists of a single particle moving between two wells of a quartic potential accommodating two different baths. The heat exchanged between the two baths is monitored according to two definitions: as the kinetic energy carried by the particle whenever it jumps from one well to the other and as the work performed by the particle on one of the two baths when immersed in it. First, we consider two equilibrium baths at two different temperatures and verify that a fluctuation theorem featuring the baths temperatures holds for both heat definitions. Then, we introduce an additional Gaussian coloured noise in one of the baths, so as to make it effectively an active (out-of-equilibrium) bath. We find that a fluctuation theorem is still satisfied with both heat definitions. Interestingly, in this case the temperature obtained through the fluctuation theorem for the active bath corresponds to the kinetic temperature when considering the first heat definition, while it is larger with the second one. We interpret these results by looking at the particle jump phenomenology.

Keywords: active bath; fluctuation theorem; heat exchange; out-of-equilibrium systems; out-of-equilibrium temperatures.

Grants and funding

This work was made possible thanks to the access to Bari ReCaS e-Infrastructure funded by MIUR through PON Research and Competitiveness 2007-2013 Call 254 Action and has been supported by the Italian Ministry of University and Research via the projects PRIN 2020/PFCXPE, PRIN 2022/HNW5YL and Quantum Sensing and Modeling for One-Health (QuaSiModO).