Traditional single nucleic acid assays can only detect one target while multiple nucleic acid assays can detect multiple targets simultaneously, providing comprehensive and accurate information. Fluorescent microspheres in multiplexed nucleic acid detection offer high sensitivity, specificity, multiplexing, flexibility, and scalability advantages, enabling precise, real-time results and supporting clinical diagnosis and research. However, multiplexed assays face challenges like complexity, costs, and sample handling issues. The review explores the recent advancements and applications of fluorescent microspheres in multiple nucleic acid detection. It discusses the versatility of fluorescent microspheres in various fields, such as disease diagnosis, drug screening, and personalized medicine. The review highlights the possibility of adjusting the performance of fluorescent microspheres by modifying concentrations and carrier forms, allowing for tailored applications. It emphasizes the potential of fluorescent microsphere technology in revolutionizing nucleic acid detection and advancing health, disease treatment, and medical research.
Keywords: fluorescent microspheres; genome; microsphere synthesis and modification; multiple nucleic acid detection; pathogens; tumors.