Down-Regulation of AKT Proteins Slows the Growth of Mutant-KRAS Pancreatic Tumors

Cells. 2024 Jun 19;13(12):1061. doi: 10.3390/cells13121061.

Abstract

Serine/threonine kinase AKT isoforms play a well-established role in cell metabolism and growth. Most pancreatic adenocarcinomas (PDACs) harbor activation mutations of KRAS, which activates the PI3K/AKT signaling pathway. However, AKT inhibitors are not effective in the treatment of pancreatic cancer. To better understand the role of AKT signaling in mutant-KRAS pancreatic tumors, this study utilized proteolysis-targeting chimeras (PROTACs) and CRISPR-Cas9-genome editing to investigate AKT proteins. The PROTAC down-regulation of AKT proteins markedly slowed the growth of three pancreatic tumor cell lines harboring mutant KRAS. In contrast, the inhibition of AKT kinase activity alone had very little effect on the growth of these cell lines. The concurrent genetic deletion of all AKT isoforms (AKT1, AKT2, and AKT3) in the KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cell line also dramatically slowed its growth in vitro and when orthotopically implanted in syngeneic mice. Surprisingly, insulin-like growth factor-1 (IGF-1), but not epidermal growth factor (EGF), restored KPC cell growth in serum-deprived conditions, and the IGF-1 growth stimulation effect was AKT-dependent. The RNA-seq analysis of AKT1/2/3-deficient KPC cells suggested that reduced cholesterol synthesis may be responsible for the decreased response to IGF-1 stimulation. These results indicate that the presence of all three AKT isoforms supports pancreatic tumor cell growth, and the pharmacological degradation of AKT proteins may be more effective than AKT catalytic inhibitors for treating pancreatic cancer.

Keywords: AKT; IGF-1; cholesterol metabolism; pancreatic cancer.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Down-Regulation* / drug effects
  • Down-Regulation* / genetics
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Mice
  • Mutation* / genetics
  • Pancreatic Neoplasms* / drug therapy
  • Pancreatic Neoplasms* / genetics
  • Pancreatic Neoplasms* / metabolism
  • Pancreatic Neoplasms* / pathology
  • Proto-Oncogene Proteins c-akt* / metabolism
  • Proto-Oncogene Proteins p21(ras)* / genetics
  • Proto-Oncogene Proteins p21(ras)* / metabolism
  • Signal Transduction / drug effects

Substances

  • Proto-Oncogene Proteins c-akt
  • Proto-Oncogene Proteins p21(ras)
  • KRAS protein, human