Associations between PM2.5 Components and Mortality of Ischemic Stroke, Chronic Obstructive Pulmonary Disease and Diabetes in Beijing, China

Toxics. 2024 May 23;12(6):381. doi: 10.3390/toxics12060381.

Abstract

Ischemic stroke (IS), chronic obstructive pulmonary disease (COPD) and diabetes mellitus (DM) account for a large burden of premature deaths. However, few studies have investigated the associations between fine particular matter (PM2.5) components and mortality of IS, COPD and DM. We aimed to examine these associations in Beijing, China. Data on daily mortality, air pollutants and meteorological factors from 2008 to 2011 in Beijing were collected. Daily concentrations of five PM2.5 components, namely, sulfate ion (SO42-), ammonium ion (NH4+), nitrate ion (NO3-), organic matter (OM) and black carbon (BC), were obtained from the Tracking Air Pollution (TAP) database in China. The association between PM2.5 components and daily deaths was explored using a quasi-Poisson regression with the distributed lag nonlinear model (DLNM). The average daily concentrations of SO42-, NH4+, NO3-, OM and BC were 11.24, 8.37, 12.00, 17.34 and 3.32 μg/m3, respectively. After adjusting for temperature, relative humidity, pressure, particulate matter less than 10 μm in aerodynamic diameter (PM10), nitrogen dioxide (NO2) and sulfur dioxide (SO2), an IQR increase in OM at lag day 2 and lag day 6 was associated with an increased DM mortality risk (RR 1.038; 95% CI: 1.005-1.071) and COPD mortality risk (RR 1.013; 95% CI: 1.001-1.026). An IQR increase in BC at lag day 0 and lag day 6 was associated with increased COPD mortality risk (RR 1.228; 95% CI: 1.017-1.48, RR 1.059; 95% CI: 1.001-1.121). Cumulative exposure to SO42- and NH4+ was associated with an increased mortality risk for IS, with the highest effect found for lag of 0-7 days (RR 1.085; 95% CI: 1.010-1.167, RR 1.083; 95% CI: 1.003-1.169). These effects varied by sex and age group. This study demonstrated associations of short-term exposure to PM2.5 components with increased risk of IS, COPD and DM mortality in the general population. Our study also highlighted susceptible subgroups.

Keywords: air pollutants; chronic obstructive pulmonary disease; diabetes; distributed lag nonlinear model; ischemic stroke; mortality.