Unconventional Magnetic and Magneto-Transport Properties in Quasi-2D Ni0.28TaSeS Single Crystal

Small. 2024 Oct;20(43):e2403002. doi: 10.1002/smll.202403002. Epub 2024 Jun 25.

Abstract

Van der Waals (vdW) magnetic materials have broad application prospects in next-generation spintronics. Inserting magnetic elements into nonmagnetic vdW materials can introduce magnetism and enhance various transport properties. Herein, the unconventional magnetic and magneto-transport phenomena is reported in Ni0.28TaSeS crystal by intercalating Ni atoms into nonmagnetic 2H-TaSeS matrix. Magnetic characterization reveals a canted magnetic structure in Ni0.28TaSeS, which results in an antiferromagnetic (AFM) order along the c-axis and a ferromagnetic (FM) moment in the ab-plane. The presence of spin-flop (SF) behavior can also be attributed to the canted magnetic structure. Temperature-dependent resistivity exhibits a metallic behavior with an abrupt decrease corresponding to the magnetic transition. Magneto-transport measurements demonstrate a positive magnetoresistance (MR) with a plateau that is different from conventional magnetic materials. The field-dependent Hall signal exhibits nonlinear field dependence when the material is in magnetically ordered state. These unconventional magneto-transport behaviors are attributed to the field-induced formation of a complex spin texture in Ni0.28TaSeS. In addition, it further investigated the angle dependence of MR and observed an unusual fourfold anisotropic magnetoresistance (AMR) effect. This work inspires future research on spintronic devices utilizing magnetic atom-intercalated quasi-2D materials.

Keywords: fourfold AMR; magnetic materials; spintronics; transport properties.