Engineered Probiotic Bio-Heterojunction with Robust Antibiofilm Modality via "Eating" Extracellular Polymeric Substances for Wound Regeneration

Adv Mater. 2024 Aug;36(35):e2402530. doi: 10.1002/adma.202402530. Epub 2024 Jul 1.

Abstract

The compact three-dimensional (3D) structure of extracellular polymeric substances (EPS) within biofilms significantly hinders the penetration of antimicrobial agents, making biofilm eradication challenging and resulting in persistent biofilm-associated infections. To address this challenge, a solution is proposed: a probiotic bio-heterojunction (P-bioHJ) combining Lactobacillus rhamnosus with MXene (Ti3C2) quantum dots (MQDs)/FeS heterojunction. This innovation aims to break down the saccharides in EPS, enabling effective combat against biofilm-associated infections. Initially, the P-bioHJ targets saccharides through metabolic processes, causing the collapse of EPS and allowing infiltration into bacterial colonies. Simultaneously, upon exposure to near-infrared (NIR) irradiation, the P-bioHJ produces reactive oxygen species (ROS) and thermal energy, deploying physical mechanisms to combat bacterial biofilms effectively. Following antibiofilm treatment, the P-bioHJ adjusts the oxidative environment, reduces wound inflammation by scavenging ROS, boosts antioxidant enzyme activity, and mitigates the NF-κB inflammatory pathway, thereby accelerating wound healing. In vitro and in vivo experiments confirm the exceptional antibiofilm, antioxidant/anti-inflammatory, and wound-regeneration properties of P-bioHJ. In conclusion, this study provides a promising approach for treating biofilm-related infections.

Keywords: antibiofilm; bio‐heterojunction; probiotic; tissue regeneration.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Antioxidants / chemistry
  • Antioxidants / pharmacology
  • Biofilms* / drug effects
  • Extracellular Polymeric Substance Matrix* / chemistry
  • Extracellular Polymeric Substance Matrix* / metabolism
  • Lacticaseibacillus rhamnosus* / metabolism
  • Mice
  • Probiotics* / pharmacology
  • Quantum Dots / chemistry
  • Reactive Oxygen Species* / metabolism
  • Wound Healing* / drug effects

Substances

  • Reactive Oxygen Species
  • Anti-Bacterial Agents
  • Antioxidants