Highly Efficient Nitrogen Reduction to Ammonia through the Cooperation of Plasma and Porous Metal-Organic Framework Reactors with Confined Water

Angew Chem Int Ed Engl. 2024 Sep 23;63(39):e202409698. doi: 10.1002/anie.202409698. Epub 2024 Aug 9.

Abstract

While the ambient N2 reduction to ammonia (NH3) using H2O as hydrogen source (2N2+6H2O=4NH3+3O2) is known as a promising alternative to the Haber-Bosch process, the high bond energy of N≡N bond leads to the extremely low NH3 yield. Herein, we report a highly efficient catalytic system for ammonia synthesis using the low-temperature dielectric barrier discharge plasma to activate inert N2 molecules into the excited nitrogen species, which can efficiently react with the confined and concentrated H2O molecules in porous metal-organic framework (MOF) reactors with V3+, Cr3+, Mn3+, Fe3+, Co2+, Ni2+ and Cu2+ ions. Specially, the Fe-based catalyst MIL-100(Fe) causes a superhigh NH3 yield of 22.4 mmol g-1 h-1. The investigation of catalytic performance and systematic characterizations of MIL-100(Fe) during the plasma-driven catalytic reaction unveils that the in situ generated defective Fe-O clusters are the highly active sites and NH3 molecules indeed form inside the MIL-100(Fe) reactor. The theoretical calculation reveals that the porous MOF catalysts have different adsorption capacity for nitrogen species on different catalytic metal sites, where the optimal MIL-100(Fe) has the lowest energy barrier for the rate-limiting *NNH formation step, significantly enhancing efficiency of nitrogen fixation.

Keywords: Ammonia Synthesis; Metal–Organic Framework; Plasma; Reactor; Structure Defect.