Combined Control for a Piezoelectric Actuator Using a Feed-Forward Neural Network and Feedback Integral Fast Terminal Sliding Mode Control

Micromachines (Basel). 2024 Jun 5;15(6):757. doi: 10.3390/mi15060757.

Abstract

In recent years, there has been significant interest in incorporating micro-actuators into industrial environments; this interest is driven by advancements in fabrication methods. Piezoelectric actuators (PEAs) have emerged as vital components in various applications that require precise control and manipulation of mechanical systems. These actuators play a crucial role in the micro-positioning systems utilized in nanotechnology, microscopy, and semiconductor manufacturing; they enable extremely fine movements and adjustments and contribute to vibration control systems. More specifically, they are frequently used in precision positioning systems for optical components, mirrors, and lenses, and they enhance the accuracy of laser systems, telescopes, and image stabilization devices. Despite their numerous advantages, PEAs exhibit complex dynamics characterized by phenomena such as hysteresis, which can significantly impact accuracy and performance. The characterization of these non-linearities remains a challenge for PEA modeling. Recurrent artificial neural networks (ANNs) may simplify the modeling of the hysteresis dynamics for feed-forward compensation. To address these challenges, robust control strategies such as integral fast terminal sliding mode control (IFTSMC) have been proposed. Unlike traditional fast terminal sliding mode control methods, IFTSMC includes integral action to minimize steady-state errors, improving the tracking accuracy and disturbance rejection capabilities. However, accurate modeling of the non-linear dynamics of PEAs remains a challenge. In this study, we propose an ANN-based IFTSMC controller to address this issue and to enhance the precision and reliability of PEA positioning systems. We implement and validate the proposed controller in a real-time setup and compare its performance with that of a PID controller. The results obtained from real PEA experiments demonstrate the stability of the novel control structure, as corroborated by the theoretical analysis. Furthermore, experimental validation reveals a notable reduction in error compared to the PID controller.

Keywords: hysteresis; integral fast terminal sliding mode control; piezoelectric actuator; recurrent neural network.

Grants and funding

This research received no external funding.