Transcriptomic Insights into Molecular Response of Butter Lettuce to Different Light Wavelengths

Plants (Basel). 2024 Jun 7;13(12):1582. doi: 10.3390/plants13121582.

Abstract

Lettuce is a widely consumed leafy vegetable; it became popular due to its enhanced nutritional content. Recently, lettuce is also regarded as one of the model plants for vegetable production in plant factories. Light and nutrients are essential environmental factors that affect lettuce growth and morphology. To evaluate the impact of light spectra on lettuce, butter lettuce was grown under the light wavelengths of 460, 525, and 660 nm, along with white light as the control. Plant morphology, physiology, nutritional content, and transcriptomic analyses were performed to study the light response mechanisms. The results showed that the leaf fresh weight and length/width were higher when grown at 460 nm and lower when grown at 525 nm compared to the control treatment. When exposed to 460 nm light, the sugar, crude fiber, mineral, and vitamin concentrations were favorably altered; however, these levels decreased when exposed to light with a wavelength of 525 nm. The transcriptomic analysis showed that co-factor and vitamin metabolism- and secondary metabolism-related genes were specifically induced by 460 nm light exposure. Furthermore, the pathway enrichment analysis found that flavonoid biosynthesis- and vitamin B6 metabolism-related genes were significantly upregulated in response to 460 nm light exposure. Additional experiments demonstrated that the vitamin B6 and B2 content was significantly higher in leaves exposed to 460 nm light than those grown under the other conditions. Our findings suggested that the addition of 460 nm light could improve lettuce's biomass and nutritional value and help us to further understand how the light spectrum can be tuned as needed for lettuce production.

Keywords: butter lettuce; light spectrum; nutritional content; physiology; transcriptomics.

Grants and funding

This research received no funding.