The treatment of flue gases has become a crucial area of interest with the increasing air emissions into the atmosphere from industries involved in combustion of fossil fuels in their operations. In essence, there is a critical need for effective methods of treatment more than ever. Treatment and separation are now a demand for the overall industrial operations to control the rate of flue gas emissions. The major culprit in this wise is power generating industry. The major associated air pollutants are carbon dioxide, sulfur oxides, trace metals, volatile organic compounds, particulate matters, and nitrogen oxides. However, the choice of technologies to be utilized requires more than just knowledge of the separation process, but also a good understanding of the properties of the pollutants. This review explored and evaluated the various separation processes and technologies for the treatment of industrial flue gases for the control of the associated air pollutants. It also analyzed the performance with references to cost and efficiency, the advantages and disadvantages, principles for selection, research direction, and/or potential opportunities in existing separation processes and technologies.
Keywords: Air pollution; Control; Flue gases; Separation processes; Treatment.
© 2024 The Authors.