Background: The autonomic nervous system (ANS) plays a central role in pregnancy-induced adaptations, and failure in the required adaptations is associated with adverse neonatal and maternal outcomes. Mapping maternal ANS function in healthy pregnancy may help to understand ANS function.
Objective: This study aimed to systematically review studies on the use of heart rate variability (HRV) monitoring to measure ANS function during pregnancy and determine whether specific HRV patterns representing normal ANS function have been identified during pregnancy.
Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was used to guide the systematic review. The CINAHL, PubMed, SCOPUS, and Web of Science databases were searched to comprehensively identify articles without a time span limitation. Studies were included if they assessed HRV in healthy pregnant individuals at least once during pregnancy or labor, with or without a comparison group (eg, complicated pregnancy). Quality assessment of the included literature was performed using the National Heart, Lung, and Blood Institute (NHLBI) tool. A narrative synthesis approach was used for data extraction and analysis, as the articles were heterogenous in scope, approaches, methods, and variables assessed, which precluded traditional meta-analysis approaches being used.
Results: After full screening, 8 studies met the inclusion criteria. In 88% (7/8) of the studies, HRV was measured using electrocardiogram and operationalized in 3 different ways: linear frequency domain (FD), linear time domain (TD), and nonlinear methods. FD was measured in all (8/8), TD in 75% (6/8), and nonlinear methods in 25% (2/8) of the studies. The assessment duration varied from 5 minutes to 24 hours. TD indexes and most of the FD indexes decreased from the first to the third trimesters in the majority (5/7, 71%) of the studies. Of the FD indexes, low frequency (LF [nu]) and the LF/high frequency (HF) ratio showed an ascending trend from early to late pregnancy, indicating an increase in sympathetic activity toward the end of the pregnancy.
Conclusions: We identified 3 HRV operationalization methods along with potentially indicative HRV patterns. However, we found no justification for the selection of measurement tools, measurement time frames, and operationalization methods, which threaten the generalizability and reliability of pattern findings. More research is needed to determine the criteria and methods for determining HRV patterns corresponding to ANS functioning in healthy pregnant persons.
Keywords: autonomic nervous system assessment; heart rate variability; pregnancy; systematic review.
©Zahra Sharifiheris, Amir Rahmani, Joseph Onwuka, Miriam Bender. Originally published in JMIR Bioinformatics and Biotechnology (https://bioinform.jmir.org), 17.11.2022.