Background and purpose: Inhibitors of histone deacetylases (iHDACs) are promising drugs for neurodegenerative diseases. We have evaluated the therapeutic potential of the new iHDAC LASSBio-1911 in Aβ oligomer (AβO) toxicity models and astrocytes, key players in neuroinflammation and Alzheimer's disease (AD).
Experimental approach: Astrocyte phenotype and synapse density were evaluated by flow cytometry, Western blotting, immunofluorescence and qPCR, in vitro and in mice. Cognitive function was evaluated by behavioural assays using a mouse model of intracerebroventricular infusion of AβO.
Key results: LASSBio-1911 modulates reactivity and synaptogenic potential of cultured astrocytes and improves synaptic markers in cultured neurons and in mice. It prevents AβO-triggered astrocytic reactivity in mice and enhances the neuroprotective potential of astrocytes. LASSBio-1911 improves behavioural performance and rescues synaptic and memory function in AβO-infused mice.
Conclusion and implications: These results contribute to unveiling the mechanisms underlying astrocyte role in AD and provide the rationale for using astrocytes as targets to new drugs for AD.
Keywords: Alzheimer's disease; astrocyte; histone deacetylase inhibitor; multitarget drugs; neuroinflammation; reactivity.
© 2024 British Pharmacological Society.