Deep Learning to Estimate Left Ventricular Ejection Fraction From Routine Coronary Angiographic Images

JACC Adv. 2023 Oct 11;2(9):100632. doi: 10.1016/j.jacadv.2023.100632. eCollection 2023 Nov.

Abstract

Background: Cine images during coronary angiography contain a wealth of information besides the assessment of coronary stenosis. We hypothesized that deep learning (DL) can discern moderate-severe left ventricular dysfunction among patients undergoing coronary angiography.

Objectives: The purpose of this study was to assess the ability of machine learning models in estimating left ventricular ejection fraction (LVEF) from routine coronary angiographic images.

Methods: We developed a combined 3D-convolutional neural network (CNN) and transformer to estimate LVEF for diagnostic coronary angiograms of the left coronary artery (LCA). Two angiograms, left anterior oblique (LAO)-caudal and right anterior oblique (RAO)-cranial projections, were fed into the model simultaneously. The model classified LVEF as significantly reduced (LVEF ≤40%) vs normal or mildly reduced (LVEF>40%). Echocardiogram performed within 30 days served as the gold standard for LVEF.

Results: A collection of 18,809 angiograms from 17,346 patients from Mayo Clinic were included (mean age 67.29; 35% women). Each patient appeared only in the training (70%), validation (10%), or testing set (20%). The model exhibited excellent performance (area under the receiver operator curve [AUC] 0.87; sensitivity 0.77; specificity 0.80) in the training set. The model's performance exceeded human expert assessment (AUC, sensitivity, and specificity of 0.86, 0.76, and 0.77, respectively) vs (AUC, sensitivity, and specificity of 0.76-0.77, 0.50-0.44, and 0.90-0.93, respectively). In additional sensitivity analyses, combining the LAO and RAO views yielded a higher AUC, sensitivity, and specificity than utilizing either LAO or RAO individually. The original model combining CNN and transformer was superior to DL models using either 3D-CNN or transformers.

Conclusions: A novel DL algorithm demonstrated rapid and accurate assessment of LVEF from routine coronary angiography. The algorithm can be used to support clinical decision-making and form the foundation for future models that could extract meaningful data from routine angiography studies.

Keywords: artificial intelligence; coronary angiography; deep learning; left ventricular ejection fraction.