Purpose: Tumour perfusion is a nutrient-agnostic biomarker for cancer metabolic rate. Use of tumour perfusion for cancer growth assessment has been limited by complicated image acquisition, image analysis and limited field-of-view scanners. Long axial field-of-view (LAFOV) PET scan using [15O]H2O, allows quantitative assessment of whole-body tumour perfusion. We created a tool for automated creation of quantitative parametric whole-body tumour perfusion images in metastatic cancer.
Methods: Ten metastatic prostate cancer patients underwent dynamic LAFOV [15O]H2O PET (Siemens, Quadra) followed by [18F]PSMA-1007 PET. Perfusion was measured as [15O]H2O K1 (mL/min/mL) with a single-tissue compartment model and an automatically captured cardiac image-derived input function. Parametric perfusion images were automatically calculated using the basis-function method with initial voxel-wise delay estimation and a leading-edge approach. Subsequently, perfusion of volumes-of-interest (VOI) can be directly extracted from the parametric images. We used a [18F]PSMA-1007 SUV 4 fixed threshold for tumour delineation and transferred these VOIs to the perfusion map.
Results: For 8 primary tumours, 64 lymph node metastases, and 85 bone metastases, median tumour perfusion were 0.19 (0.15-0.27) mL/min/mL, 0.16 (0.13-0.27) mL/min/mL, and 0.26 (0.21-0.39), respectively. The correlation between calculated perfusion from time-activity-curves and parametric images was excellent (r = 0.99, p < 0.0001).
Conclusion: LAFOV PET imaging using [15O]H2O enables truly quantitative parametric images of whole-body tumour perfusion, a potential biomarker for guiding personalized treatment and monitoring treatment response.
Keywords: Cancer; Dynamic PET; Long axial field-of-view; Perfusion; Prostate cancer; Tumour blood flow.
© 2024. The Author(s).