Artificial Intelligence and Multiple Sclerosis

Curr Neurol Neurosci Rep. 2024 Aug;24(8):233-243. doi: 10.1007/s11910-024-01354-x. Epub 2024 Jun 28.

Abstract

In this paper, we analyse the different advances in artificial intelligence (AI) approaches in multiple sclerosis (MS). AI applications in MS range across investigation of disease pathogenesis, diagnosis, treatment, and prognosis. A subset of AI, Machine learning (ML) models analyse various data sources, including magnetic resonance imaging (MRI), genetic, and clinical data, to distinguish MS from other conditions, predict disease progression, and personalize treatment strategies. Additionally, AI models have been extensively applied to lesion segmentation, identification of biomarkers, and prediction of outcomes, disease monitoring, and management. Despite the big promises of AI solutions, model interpretability and transparency remain critical for gaining clinician and patient trust in these methods. The future of AI in MS holds potential for open data initiatives that could feed ML models and increasing generalizability, the implementation of federated learning solutions for training the models addressing data sharing issues, and generative AI approaches to address challenges in model interpretability, and transparency. In conclusion, AI presents an opportunity to advance our understanding and management of MS. AI promises to aid clinicians in MS diagnosis and prognosis improving patient outcomes and quality of life, however ensuring the interpretability and transparency of AI-generated results is going to be key for facilitating the integration of AI into clinical practice.

Keywords: Artificial intelligence; Data science; Machine learning; Multiple sclerosis; Neurology.

Publication types

  • Review

MeSH terms

  • Artificial Intelligence*
  • Humans
  • Machine Learning
  • Multiple Sclerosis* / diagnosis
  • Multiple Sclerosis* / therapy