Inhibition of human dihydroorotate dehydrogenase (hDHODH) represents a promising strategy for suppressing the proliferation of cancer cells. To identify novel and potent hDHODH inhibitors, a total of 28 piperine derivatives were designed and synthesized. Their cytotoxicities against three human cancer cell lines (NCI-H226, HCT-116, and MDA-MB-231) and hDHODH inhibitory activities were also evaluated. Among them, compound H19, exhibited the strongest inhibitory activities (NCI-H226 IC50 = 0.95 µM, hDHODH IC50 = 0.21 µM). Further pharmacological investigations revealed that H19 exerted anticancer effects by inducing ferroptosis in NCI-H226 cells, with its cytotoxicity being reversed by ferroptosis inhibitors. This was supported by the intracellular growth or decline of ferroptosis markers, including lipid peroxidation, Fe2+, GSH, and 4-HNE. Overall, H19 emerges as a promising hDHODH inhibitor with potential anticancer properties warranting development.
Keywords: Cytotoxic; Ferroptosis; Lipid peroxidation; Piperine derivatives; hDHODH inhibitors.
Copyright © 2024 Elsevier Inc. All rights reserved.