Unraveling Renal Arteries Morphogenesis from Tridimensional Human Embryos Reconstruction

Ann Vasc Surg. 2024 Nov:108:65-75. doi: 10.1016/j.avsg.2024.04.010. Epub 2024 Jun 26.

Abstract

Background: During human morphogenesis, the definitive kidneys derive from the metanephros during Carnegie Stage 14 to 23. The pronephros and the mesonephros develop previously and successively to finally lead to the formation of the urinary tract. Renal vascularization, first described in 1912 by Félix using a "ladder theory" model, is highly variable and current available morphogenesis descriptions do not explain all reported anatomical variations. The aim of this work was to study the morphogenesis of the human metanephros and its vascularization by three-dimensional reconstructions of human embryos.

Methods: Histological sections of 23 human embryos from the Carnegie Collection and 5 human embryos from the French collection (Carnegie stages 14 to 23) were completely digitalized and reconstructed in three dimensions using specific softwares and then analyzed by descriptive method using manual annotation.

Results: In all studied embryos, the mesonephric arteries did not reach the metanephros irrespective to the position of the metanephros during its cranial ascent. Before the end of the cranial metanephros migration (15 embryos), at the level of the aorto-iliac bifurcation, a "primitive" vascularization was shown in 9 of them. The renal artery originated from the primitive iliac arteries for 8 embryos and from the inferior mesenteric artery in one embryo. Further, a capillary cluster emerging from the lateral wall of the aorta and extending toward the metanephros was found in 2 embryos (Carnegie stages 21 and 22). This may correspond to a phenomenon of neoangiogenesis responsible of the definitive renal artery.

Conclusions: The present study reported the morphogenesis of human renal arteries between Carnegie stages 14 and 23 using an original method of tridimensional computerized reconstructions of historical human embryos. Some original findings, in contradiction with the original Felix's description, may explain the most frequently reported anatomical variations.

MeSH terms

  • Gestational Age
  • Humans
  • Imaging, Three-Dimensional*
  • Kidney / blood supply
  • Kidney / embryology
  • Mesonephros* / embryology
  • Models, Anatomic
  • Morphogenesis*
  • Renal Artery* / embryology