The peptide hormone relaxin plays a critical role in tissue remodeling in a variety of tissues through activation of its cognate receptor, RXFP1. Relaxin's ability to modify extracellular matrices has provided a strong rationale for treating fibrosis in a variety of tissues. Treatment with recombinant relaxin peptides in clinical studies of heart failure has not yet proven useful, likely due to the short half-life of infused peptide. To circumvent this particular pharmacokinetic pitfall we have used a Protein-in-Protein (PiP) antibody technology described previously, to insert a single-chain human relaxin construct into the complementarity-determining region (CDR) of an immunoglobulin G (IgG) backbone, creating a relaxin molecule with a half-life of ∼4-5 days in mice. Relaxin-PiP biologics displaced Europium-labeled human relaxin in RXFP1-expressing cells and demonstrated full agonist activity on both human and mouse RXFP1 receptors. Relaxin-PiPs did not show signal transduction bias, as they activated cAMP in THP-1 cells, and cGMP and pERK signaling in primary human cardiac fibroblasts. In an induced carbon tetrachloride mouse model of liver fibrosis one relaxin-PiP, R2-PiP, caused reduction of liver lesions, ameliorated collagen accumulation in the liver with the corresponding reduction of Collagen1a1 gene expression, and increased cell proliferation in hepatic parenchyma. These relaxin biologics represent a novel approach to the design of a long-acting RXFP1 agonist to probe the clinical utility of relaxin/RXFP1 signaling to treat a variety of human fibrotic diseases.
Keywords: Fibrosis; Protein-in-Protein; RXFP1; Relaxin.
Copyright © 2024 Elsevier Inc. All rights reserved.