Background: Normal endothelial cell dependent vascular smooth muscle cell function is mediated by nitric oxide (NO), which stimulates soluble guanylyl cyclase (sGC) production of the second messenger, cyclic guanosine monophosphate (cGMP) leading to increased protein kinase G (PKG) activity and vascular smooth muscle relaxation. NO bioavailability is impaired in inflammatory settings, such as high glucose (HG). We examined whether the direct sGC sensitizer/stimulator vericiguat, augments cGMP production in human vascular smooth muscle cells (HVSMC) exposed to high glucose and explored its effect on vasorelaxation.
Methods: Aortic HVSMCs were exposed to HG for 24h. In the treatment group, cells also received 1uM vericiguat for 24h. After incubation, cGMP and PKG activity were measured. Additionally, thoracic murine aortas were exposed to HG or to normal glucose (NG) control. The rings were then placed in an organ chamber bath and dose response curves to increasing doses of acetylcholine (Ach) and sodium nitroprusside were constructed for three groups: control (normal glucose), HG alone, and HG + vericiguat.
Results: HVSMCs exposed to HG produced significantly less cGMP than those exposed to NG. cGMP production in the presence of HG was rescued when treated with 1uM vericiguat. Additionally, PKG activity was impaired in the presence of HG and enzyme activity was restored with vericiguat. In isolated mouse aortic rings, ACh mediated relaxation was impaired following treatment with HG, but was improved when a HG group was treated with vericiguat.
Conclusions: The sGC sensitizer/stimulator vericiguat restored cGMP production and PKG activity in the setting of HG. Vericiguat enhanced ACh-mediated vasorelaxation in the setting of HG. The findings suggest clinical studies are warranted to investigate the potential of sGC sensitization/stimulation as a therapeutic intervention to improve vascular endothelial-dependent function that is impaired in pro-inflammatory settings that are associated with the development of atherosclerotic disease.