Motion-Inclusive Treatment Planning to Assess Normal Tissue Dose for Central Lung Stereotactic Body Radiation Therapy

Adv Radiat Oncol. 2024 Apr 27;9(7):101525. doi: 10.1016/j.adro.2024.101525. eCollection 2024 Jul.

Abstract

Purpose: For lung stereotactic body radiation therapy, 4-dimensional computed tomography is often used to delineate target volumes, whereas organs at risk (OARs) are typically outlined on either average intensity projection (AIP) or midventilation (MidV = 30% phase) images. AIP has been widely adopted as it represents a true average, but image blurring often precludes accurate contouring of critical structures such as central airways. Here, we compare AIP versus MidV planning for centrally located tumors via respiratory motion-inclusive (RMI) plans to better evaluate dose delivered throughout the breathing cycle.

Methods and materials: Independently contoured and optimized AIP and MidV plans were created for 16 treatments and rigidly copied to each of the 10 breathing phase-specific computed tomography image sets. Resulting dose distributions were deformably registered back to the MidV image set (used as reference because of clearer depiction of anatomy compared with motion-blurred AIP) and averaged to create RMI plans. Doses to central OARs were compared between plans.

Results: Mean absolute dose differences were low for all comparisons (range, 0.01-2.87 Gy); however, individual plans exhibited differences >20 Gy. Dose differences >5 Gy were observed most often for plan comparisons involving AIP-based plans (MidV vs AIP 23, AIP RMI vs AIP 12, MidV RMI vs AIP RMI 7, and MidV RMI vs MidV 8 times). Inclusion of respiratory motion reduced large dose differences. Standard OAR thresholds were exceeded up to 5 times for each plan comparison scenario and always involved proximal bronchial tree D4 cc tolerance dose. AIP-based contours were larger by, on average, 3% to 15%.

Conclusions: Large dose differences were observed when plans with AIP-based contours were compared with MidV-based contours, indicating that observed dose differences were likely due to contoured volume differences rather than the effect of motion. Because of blurring with AIP images, MidV RMI-based planning may offer a more accurate method to determine dose to critical OARs in the presence of respiratory motion.