Caries lesions diagnosis with deep convolutional neural network in intraoral QLF images by handheld device

BMC Oral Health. 2024 Jun 29;24(1):754. doi: 10.1186/s12903-024-04517-x.

Abstract

Objectives: This study investigated the effectiveness of a deep convolutional neural network (CNN) in diagnosing and staging caries lesions in quantitative light-induced fluorescence (QLF) images taken by a self-manufactured handheld device.

Methods: A small toothbrush-like device consisting of a 400 nm UV light-emitting lamp with a 470 nm filter was manufactured for intraoral imaging. A total of 133 cases with 9,478 QLF images of teeth were included for caries lesion evaluation using a CNN model. The database was divided into development, validation, and testing cohorts at a 7:2:1 ratio. The accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUC) were calculated for model performance.

Results: The overall caries prevalence was 19.59%. The CNN model achieved an AUC of 0.88, an accuracy of 0.88, a specificity of 0.94, and a sensitivity of 0.64 in the validation cohort. They achieved an overall accuracy of 0.92, a sensitivity of 0.95 and a specificity of 0.55 in the testing cohort. The model can distinguish different stages of caries well, with the best performance in detecting deep caries followed by intermediate and superficial lesions.

Conclusions: Caries lesions have typical characteristics in QLF images and can be detected by CNNs. A QLF-based device with CNNs can assist in caries screening in the clinic or at home.

Trial registration: The clinical trial was registered in the Chinese Clinical Trial Registry (No. ChiCTR2300073487, Date: 12/07/2023).

Keywords: Artificial intelligence; Caries; Handheld device; Home use; Quantitative light-induced fluorescence.

MeSH terms

  • Adolescent
  • Adult
  • Dental Caries* / diagnosis
  • Dental Caries* / diagnostic imaging
  • Female
  • Humans
  • Male
  • Middle Aged
  • Neural Networks, Computer*
  • Quantitative Light-Induced Fluorescence* / instrumentation
  • ROC Curve
  • Sensitivity and Specificity
  • Young Adult