SB-Net: Synergizing CNN and LSTM networks for uncovering retrosynthetic pathways in organic synthesis

Comput Biol Chem. 2024 Oct:112:108130. doi: 10.1016/j.compbiolchem.2024.108130. Epub 2024 Jun 15.

Abstract

Retrosynthesis is vital in synthesizing target products, guiding reaction pathway design crucial for drug and material discovery. Current models often neglect multi-scale feature extraction, limiting efficacy in leveraging molecular descriptors. Our proposed SB-Net model, a deep-learning architecture tailored for retrosynthesis prediction, addresses this gap. SB-Net combines CNN and Bi-LSTM architectures, excelling in capturing multi-scale molecular features. It integrates parallel branches for processing one-hot encoded descriptors and ECFP, merging through dense layers. Experimental results demonstrate SB-Net's superiority, achieving 73.6 % top-1 and 94.6 % top-10 accuracy on USPTO-50k data. Versatility is validated on MetaNetX, with rates of 52.8 % top-1, 74.3 % top-3, 79.8 % top-5, and 83.5 % top-10. SB-Net's success in bioretrosynthesis prediction tasks indicates its efficacy. This research advances computational chemistry, offering a robust deep-learning model for retrosynthesis prediction. With implications for drug discovery and synthesis planning, SB-Net promises innovative and efficient pathways.

Keywords: Bidirectional LSTM; Convolutional neural network; Drug discovery; Multi-scale features; Retrosynthesis prediction.