Brown spot of citrus caused by Alternaria citri is one of the emerging threats to the successful production of citrus crops. The present study, conducted with a substantial sample size of 50 leaf samples for statistical reliability, aimed to determine the change in mineral content in citrus leaves after brown spot disease attack. Leaf samples from a diverse range of susceptible citrus varieties (Valentia late, Washington navel, and Kinnow) and resistant varieties (Citron, Eruka lemon, and Mayer lemon) were analyzed. Significant variations (p ≤ 0.05) in mineral contents were observed across reaction groups (inoculated and un-inoculated), types (resistant and susceptible), and varieties of citrus in response to infection of Alternaria citri. The analysis of variance showed significant changes in mineral levels of citrus leaves, including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn), sodium (Na), iron (Fe), and copper (Cu). The results indicate that the concentration of N and P differed by 6.63% and 1.44%, respectively, in resistant plants, while susceptible plants showed a difference of 6.07% and 1.19%. Moreover, resistant plants showed a higher concentrations of K, Ca, Mg, Zn, Na, Fe, and Cu at 8.40, 2.1, 1.83, 2.21, 1.58, 2.89, and 0.36 ppm respectively, compared to susceptible plants which showed concentrations of 5.99, 1.93, 1.47, 1.09, 1.24, 1.81, and 0.31 ppm respectively. Amounts of mineral contents were reduced in both resistant as well as susceptible plants of citrus after inoculation. Amount of N (8.56), P (1.87) % while K (10.74), Ca (2.71), Mg (2.62), Zn (2.20), Na (2.08), Fe (3.57) and Cu (0.20) ppm were recorded in un-inoculated group of citrus plants that reduced to 3.15 and 0.76% and 3.66, 1.40, 0.63,0.42, 0.74, 1.13 and 0.13 ppm in inoculated group respectively. It was accomplished that susceptible varieties contained lower ionic contents than resistant varieties. The higher concentrations of ionic contents in resistant citrus varieties build up the biochemical and physiological processes of the citrus plant, which help to restrict spread of pathogens. Further research could explore the interplay between mineral nutrition and disease resistance in citrus, potentially leading to the development of new disease-resistant varieties.
Copyright: © 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.