BACKGROUNDAntibiotic-Refractory Lyme Arthritis (ARLA) involves a complex interplay of T cell responses targeting Borrelia burgdorferi antigens progressing toward autoantigens by epitope spreading. However, the precise molecular mechanisms driving the pathogenic T cell response in ARLA remain unclear. Our aim was to elucidate the molecular program of disease-specific Th cells.METHODSUsing flow cytometry, high-throughput T cell receptor (TCR) sequencing, and scRNA-Seq of CD4+ Th cells isolated from the joints of patients with ARLA living in Europe, we aimed to infer antigen specificity through unbiased analysis of TCR repertoire patterns, identifying surrogate markers for disease-specific TCRs, and connecting TCR specificity to transcriptional patterns.RESULTSPD-1hiHLA-DR+CD4+ effector T cells were clonally expanded within the inflamed joints and persisted throughout disease course. Among these cells, we identified a distinct TCR-β motif restricted to HLA-DRB1*11 or *13 alleles. These alleles, being underrepresented in patients with ARLA living in North America, were unexpectedly prevalent in our European cohort. The identified TCR-β motif served as surrogate marker for a convergent TCR response specific to ARLA, distinguishing it from other rheumatic diseases. In the scRNA-Seq data set, the TCR-β motif particularly mapped to peripheral T helper (TPH) cells displaying signs of sustained proliferation, continuous TCR signaling, and expressing CXCL13 and IFN-γ.CONCLUSIONBy inferring disease-specific TCRs from synovial T cells we identified a convergent TCR response in the joints of patients with ARLA that continuously fueled the expansion of TPH cells expressing a pathogenic cytokine effector program. The identified TCRs will aid in uncovering the major antigen targets of the maladaptive immune response.FUNDINGSupported by the German Research Foundation (DFG) MO 2160/4-1; the Federal Ministry of Education and Research (BMBF; Advanced Clinician Scientist-Program INTERACT; 01EO2108) embedded in the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg; the German Center for Infection Research (DZIF; Clinical Leave Program; TI07.001_007) and the Interdisciplinary Center for Clinical Research (IZKF) Würzburg (Clinician Scientist Program, Z-2/CSP-30).
Keywords: Arthritis; Autoimmune diseases; Autoimmunity; Infectious disease; T cell receptor.