A morphometric comparison of the ductus reuniens in humans and guinea pigs, with a note on its evolutionary importance

Anat Rec (Hoboken). 2024 Jul 4. doi: 10.1002/ar.25534. Online ahead of print.

Abstract

The mammalian inner ear contains the sensory organs responsible for balance (semicircular canals, utricle, and saccule) and hearing (cochlea). While these organs are functionally distinct, there exists a critical structural connection between the two: the ductus reuniens (DR). Despite its functional importance, comparative descriptions of DR morphology are limited, hindering our understanding of the evolutionary diversification of hearing and balance systems among mammals. Using virtual 3D models derived from micro-CT, we examine the morphology of the DR and its relationship to the bony labyrinth in humans compared to that in a commonly used animal model, the guinea pig. Anatomical reconstructions and univariate measurements were carried out in the software 3D Slicer. Data indicate similarities in DR morphology between humans and guinea pigs in terms of overall shape. However, there are considerable differences in relative DR length and width between humans and guinea pigs. Humans possess a relatively shorter and narrower DR but with wider openings to the saccule and cochlear duct. This results in a relatively more constricted DR lumen in humans which may differentially limit fluid transfer between the saccule and cochlea. Our results reveal previously hidden morphological diversity in the communication between the hearing and balance systems of the mammalian inner ear which may indicate alternative strategies for isolating the Organ of Corti from the peripheral vestibular system throughout mammalian evolution.

Keywords: inner ear; mammals; sensory systems.