Isolation and characterization of a native strain of the entomopathogenic fungus Beauveria bassiana for the control of the palm weevil Dynamis borassi (Coleoptera: Curculionidae) in the neotropics

World J Microbiol Biotechnol. 2024 Jul 5;40(9):260. doi: 10.1007/s11274-024-04044-5.

Abstract

This study aimed to isolate and characterize a native strain of Beauveria bassiana, coded as Bv065, showcasing its potential as a biological control agent targeting the palm weevil Dynamis borassi. Originating from a naturally infected D. borassi specimen collected in southwestern Colombia, the fungus underwent molecular identification and was identified as B. bassiana, exhibiting high sequence similarity with known reference strains. The physiological characterization revealed that Bv065 thrived within a temperature range of 25 to 30 °C and a pH range of 6 to 9. Moreover, the key carbon sources that allow optimal growth of the strain were identified through metabolic profiling, including sucrose, D-mannose, and γ-amino-butyric acid. These findings offer strategic insights for scalability and formulation methodologies. Additionally, enzymatic analyses unveiled robust protease activity within Bv065, crucial for catalysing insect cuticle degradation and facilitating host penetration, thus accentuating its entomopathogenic potential. Subsequent evaluations exposed Bv065's pathogenicity against D. borassi, causing significant mortality within nine days of exposure, albeit exhibiting limited effectiveness against Rhynchophorus palmarum. This study underscores the importance of understanding optimal growth conditions and metabolic preferences of B. bassiana strains for developing effective biopesticides. The findings suggest Bv065 as a promising candidate for integrated pest management strategies in neotropical regions, particularly for controlling palm weevil infestations in coconut and peach palm cultivation. Future research avenues include refining mass production methodologies, formulating novel delivery systems, and conducting comprehensive field efficacy trials to unlock the full potential of Bv065 in fostering sustainable pest management practices. Overall, this study contributes to the growing body of knowledge on entomopathogenic fungi and their pivotal role in biological control, offering nuanced perspectives on eco-friendly alternatives to conventional insecticidal interventions.

Keywords: Biological control; Entomopathogenic fungi; Integrated pest management; Mass production; Metabolic profiling; Neotropical agriculture.

MeSH terms

  • Animals
  • Beauveria* / pathogenicity
  • Beauveria* / physiology
  • Colombia
  • Hydrogen-Ion Concentration
  • Pest Control, Biological* / methods
  • Phylogeny
  • Temperature
  • Weevils* / microbiology