Root plasticity improves maize nitrogen use when nitrogen is limiting: an analysis using 3D plant modelling

J Exp Bot. 2024 Sep 27;75(18):5989-6005. doi: 10.1093/jxb/erae298.

Abstract

Plant phenotypic plasticity plays an important role in nitrogen (N) acquisition and use under nitrogen-limited conditions. However, this role has never been quantified as a function of N availability, leaving it unclear whether plastic responses should be considered as potential targets for selection. A combined modelling and experimentation approach was adopted to quantify the role of plasticity in N uptake and plant yield. Based on a greenhouse experiment we considered plasticity in two maize (Zea mays) traits: root-to-leaf biomass allocation ratio and emergence rate of axial roots. In a simulation experiment we individually enabled or disabled both plastic responses for maize stands grown across six N levels. Both plastic responses contributed to maintaining a higher N uptake, and plant productivity as N availability declined compared with stands in which plastic responses were disabled. We conclude that plastic responses quantified in this study may be a potential target trait in breeding programs for greater N uptake across N levels while it may only be important for the internal use of N under N-limited conditions in maize. Given the complexity of breeding for plastic responses, an a priori model analysis is useful to identify which plastic traits to target for enhanced plant performance.

Keywords: Functional–structural plant model; maize; phenotypic plasticity; root emergence rate; root system architecture; root-to-leaf ratio.

MeSH terms

  • Biomass
  • Models, Biological*
  • Nitrogen* / metabolism
  • Plant Leaves / growth & development
  • Plant Leaves / metabolism
  • Plant Leaves / physiology
  • Plant Roots* / growth & development
  • Plant Roots* / metabolism
  • Plant Roots* / physiology
  • Zea mays* / growth & development
  • Zea mays* / metabolism
  • Zea mays* / physiology

Substances

  • Nitrogen