Curcumin from turmeric (Curcuma longa) has traditionally been used due to its pharmacological properties, such as anticancer, anti-inflammatory, cholesterol-lowering, and antioxidant activities, but has had limitations in use due to low bioavailability. Nanoparticles have protuberant efficacies to diagnose or cure a variety of diseases, including tumors, by fine-tuning their size, structure, and physicochemical characteristics. This study aims to develop a new dosage form of curcumin nanoparticles with zinc oxide to enhance its therapeutic efficacy against cancer and cause no damage to genetics. Curcumin zinc oxide nanoparticles were prepared and characterized by using a Zeta sizer, ultraviolet (UV)-spectrophotometer, scanning electron microscope (SEM), and Fourier transform infrared (FTIR) spectroscopy. Different concentrations range from 40 to 0.078 μg/mL, and these nanoparticles were evaluated for their anticancer activity by colorimetric analysis (MTT assay) on normal (Vero) and cancerous cell lines (MCF-7) and genotoxicity by the comet assay. The spherical-shaped curcumin zinc oxide nanoparticles of 189 nm size were prepared with characteristic functional groups. The selectivity index of curcumin zinc oxide nanoparticles, calculated from IC50 values, is 4.60 > 2.0, showing anticancer potential comparable to tamoxifen. The genetic damage index of the highest concentration (40 μg/mL) of curcumin zinc oxide nanoparticles was 0.08, with a percent fragmentation of 8%. The results suggest that nanoparticles of curcumin zinc oxide produced better anticancer effects and did not cause any significant damage to the DNA. Consequently, further research is required to ensure the development of a safe and quality dosage form of nanoparticles for proper utilization.
© 2024 The Authors. Published by American Chemical Society.