Developing highly efficient single-atom catalysts (SACs) for the nitrogen reduction reaction (NRR) to ammonia production has garnered significant attention in the scientific community. However, achieving high activity and selectivity remains challenging due to the lack of innate activity in most existing catalysts or insufficient active site density. This study delves into the potential of M2C12 materials (M = Cr, Ir, Mn, Mo, Os, Re, Rh, Ru, W, Fe, Cu, and Ti) with high transition metal coverage as SACs for NRR using first-principles calculations. Among these materials, Os2C12 exhibited superior catalytic activity for NRR, with a low overpotential of 0.39 V and an Os coverage of up to 72.53 wt%. To further boost its catalytic activity, a nonmetal (NM) atom doping (NM = B, N, O, and S) and C vacancy modification were explored in Os2C12. It is found that the introduction of O enables exceptional catalytic activity, selectivity, and stability, with an even lower overpotential of 0.07 V. Incorporating the O atom disrupted the charge balance of its coordinating C atoms, effectively increasing the positive charge density of the Os-d-orbit-related electronic structure. This promoted strong d-π* coupling between Os and N2H, enhancing N2H adsorption and facilitating NRR processes. This comprehensive study provides valuable insights into NRR catalyst design for sustainable ammonia production and offers a reference for exploring alternative materials in other catalytic reactions.
Keywords: High density of active sites; Intrinsic catalytic activity; Nitrogen reduction reaction; Nonmetal doping; Single-atom catalyst.
Copyright © 2024. Published by Elsevier Inc.