The direct and indirect drivers shaping RNA viral communities in grassland soils

mSystems. 2024 Aug 20;9(8):e0009924. doi: 10.1128/msystems.00099-24. Epub 2024 Jul 9.

Abstract

Recent studies have revealed diverse RNA viral communities in soils. Yet, how environmental factors influence soil RNA viruses remains largely unknown. Here, we recovered RNA viral communities from bulk metatranscriptomes sequenced from grassland soils managed for 5 years under multiple environmental conditions including water content, plant presence, cultivar type, and soil depth. More than half of the unique RNA viral contigs (64.6%) were assigned with putative hosts. About 74.7% of these classified RNA viral contigs are known as eukaryotic RNA viruses suggesting eukaryotic RNA viruses may outnumber prokaryotic RNA viruses by nearly three times in this grassland. Of the identified eukaryotic RNA viruses and the associated eukaryotic species, the most dominant taxa were Mitoviridae with an average relative abundance of 72.4%, and their natural hosts, Fungi with an average relative abundance of 56.6%. Network analysis and structural equation modeling support that soil water content, plant presence, and type of cultivar individually demonstrate a significant positive impact on eukaryotic RNA viral richness directly as well as indirectly on eukaryotic RNA viral abundance via influencing the co-existing eukaryotic members. A significant negative influence of soil depth on soil eukaryotic richness and abundance indirectly impacts soil eukaryotic RNA viral communities. These results provide new insights into the collective influence of multiple environmental and community factors that shape soil RNA viral communities and offer a structured perspective of how RNA virus diversity and ecology respond to environmental changes.

Importance: Climate change has been reshaping the soil environment as well as the residing microbiome. This study provides field-relevant information on how environmental and community factors collectively shape soil RNA communities and contribute to ecological understanding of RNA viral survival under various environmental conditions and virus-host interactions in soil. This knowledge is critical for predicting the viral responses to climate change and the potential emergence of biothreats.

Keywords: mycoviruses; plant; soil RNA viruses; soil depth; water content.

MeSH terms

  • Grassland*
  • RNA Viruses* / genetics
  • RNA, Viral / genetics
  • Soil / chemistry
  • Soil Microbiology*
  • Virome / genetics

Substances

  • RNA, Viral
  • Soil