Microplastics (MPs) are recognized as a major environmental problem due to their ubiquitous presence in ecosystems and bioaccumulation in food chains. Not only humans are continuously exposed to these pollutants through ingestion and inhalation, but recent findings suggest they may trigger vascular inflammation and potentially worsen the clinical conditions of cardiovascular patients. Here we combine headspace analysis by needle trap microextraction-gas chromatography-mass spectrometry (HS-NTME-GC-MS) and biological assays to evaluate the effects of polystyrene, high- and low-density polyethylene MPs on phenotype, metabolic activity, and pro-inflammatory status of Vascular Smooth Muscle Cells (VSMCs) the most prominent cells in vascular walls. Virgin and artificially aged MPs (4 weeks at 40 °C and 750 W/m2 simulated solar irradiation) were comparatively tested at 1 mg/mL to simulate a realistic exposure scenario. Our results clearly show the activation of oxidative stress and inflammatory processes when VSMCs were cultured with aged polymers, with significant overexpression of IL-6 and TNF-α. In addition, volatile organic compounds (VOCs), including pentane, acrolein, propanal, and hexanal as the main components, were released by VSMCs into the headspace. Type-specific VOC response profiles were induced on vascular cells from different MPs.
Keywords: HDPE; Inflammation; LDPE; Microplastics; PS; VOCs; VSMC.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.