m3C32 tRNA modification controls serine codon-biased mRNA translation, cell cycle, and DNA-damage response

Nat Commun. 2024 Jul 10;15(1):5775. doi: 10.1038/s41467-024-50161-y.

Abstract

The epitranscriptome includes a diversity of RNA modifications that influence gene expression. N3-methylcytidine (m3C) mainly occurs in the anticodon loop (position C32) of certain tRNAs yet its role is poorly understood. Here, using HAC-Seq, we report comprehensive METTL2A/2B-, METTL6-, and METTL2A/2B/6-dependent m3C profiles in human cells. METTL2A/2B modifies tRNA-arginine and tRNA-threonine members, whereas METTL6 modifies the tRNA-serine family. However, decreased m3C32 on tRNA-Ser-GCT isodecoders is only observed with combined METTL2A/2B/6 deletion. Ribo-Seq reveals altered translation of genes related to cell cycle and DNA repair pathways in METTL2A/2B/6-deficient cells, and these mRNAs are enriched in AGU codons that require tRNA-Ser-GCT for translation. These results, supported by reporter assays, help explain the observed altered cell cycle, slowed proliferation, and increased cisplatin sensitivity phenotypes of METTL2A/2B/6-deficient cells. Thus, we define METTL2A/2B/6-dependent methylomes and uncover a particular requirement of m3C32 tRNA modification for serine codon-biased mRNA translation of cell cycle, and DNA repair genes.

MeSH terms

  • Anticodon / genetics
  • Cell Cycle* / genetics
  • Codon* / genetics
  • Cytidine / analogs & derivatives
  • Cytidine / genetics
  • Cytidine / metabolism
  • DNA Damage*
  • DNA Repair
  • HEK293 Cells
  • Humans
  • Methyltransferases / genetics
  • Methyltransferases / metabolism
  • Protein Biosynthesis*
  • RNA, Messenger* / genetics
  • RNA, Messenger* / metabolism
  • RNA, Transfer* / genetics
  • RNA, Transfer* / metabolism
  • Serine* / metabolism

Substances

  • Codon
  • RNA, Messenger
  • RNA, Transfer
  • Serine
  • Methyltransferases
  • Cytidine
  • Anticodon