Simple bioelectrical microsensor: oocyte quality prediction via membrane electrophysiological characterization

Lab Chip. 2024 Aug 6;24(16):3909-3929. doi: 10.1039/d3lc01120h.

Abstract

Oocyte selection is a crucial step of assisted reproductive treatment. The most common approach relies on the embryologist experience which is inevitably prone to human error. One potential approach could be the use of an electrical-based approach as an ameliorative alternative. Here, we developed a simple electrical microsensor to characterize mouse oocytes. The sensor is designed similarly to embryo culture dishes and is familiar to embryologists. Different microelectrode models were simulated for oocyte cells and a more sensitive model was determined. The final microsensor was fabricated. A differential measuring technique was proposed based on the cell presence/absence. We predicted oocyte quality by using three electrical characteristics, oocyte radii, and zona thicknesses, and also these predictions were compared with an embryologist evaluation. The evaluation of the oocyte membrane capacitance, as an electrophysiological characteristic, was found to be a more reliable method for predicting oocytes with fertilization and blastocyst formation success competence. It achieved 94% and 58% prediction accuracies, respectively, surpassing other methods and yielding lower errors. This groundbreaking research represents the first of its kind in this field and we hope that this will be a step towards improving the accuracy of the treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biosensing Techniques / instrumentation
  • Cell Membrane
  • Electrophysiological Phenomena
  • Female
  • Mice
  • Microelectrodes
  • Oocytes* / cytology
  • Oocytes* / physiology