Aim: To identify new biomarkers to detect untreated and treated periodontitis in gingival crevicular fluid (GCF) using sequential window acquisition of all theoretical mass spectra (SWATH-MS).
Materials and methods: GCF samples were collected from 44 periodontally healthy subjects and 40 with periodontitis (Stages III-IV). In the latter, 25 improved clinically 2 months after treatment. Samples were analysed using SWATH-MS, and proteins were identified by the UniProt human-specific database. The diagnostic capability of the proteins was determined with generalized additive models to distinguish the three clinical conditions.
Results: In the untreated periodontitis vs. periodontal health modelling, five proteins showed excellent or good bias-corrected (bc)-sensitivity/bc-specificity values of >80%. These were GAPDH, ZG16B, carbonic anhydrase 1, plasma protease inhibitor C1 and haemoglobin subunit beta. GAPDH with MMP-9, MMP-8, zinc-α-2-glycoprotein and neutrophil gelatinase-associated lipocalin and ZG16B with cornulin provided increased bc-sensitivity/bc-specificity of >95%. For distinguishing treated periodontitis vs. periodontal health, most of these proteins and their combinations revealed a predictive ability similar to previous modelling. No model obtained relevant results to differentiate between periodontitis conditions.
Conclusions: New single and dual GCF protein biomarkers showed outstanding results in discriminating untreated and treated periodontitis from periodontal health. Periodontitis conditions were indistinguishable. Future research must validate these findings.
Keywords: SWATH‐MS; diagnostic accuracy; molecular biomarkers; periodontitis; proteomics.
© 2024 The Author(s). Journal of Clinical Periodontology published by John Wiley & Sons Ltd.