This manuscript describes the development of a resource module that is part of a learning platform named "NIGMS Sandbox for Cloud-based Learning" https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module delivers learning materials on RNA sequencing (RNAseq) data analysis in an interactive format that uses appropriate cloud resources for data access and analyses. Biomedical research is increasingly data-driven, and dependent upon data management and analysis methods that facilitate rigorous, robust, and reproducible research. Cloud-based computing resources provide opportunities to broaden the application of bioinformatics and data science in research. Two obstacles for researchers, particularly those at small institutions, are: (i) access to bioinformatics analysis environments tailored to their research; and (ii) training in how to use Cloud-based computing resources. We developed five reusable tutorials for bulk RNAseq data analysis to address these obstacles. Using Jupyter notebooks run on the Google Cloud Platform, the tutorials guide the user through a workflow featuring an RNAseq dataset from a study of prophage altered drug resistance in Mycobacterium chelonae. The first tutorial uses a subset of the data so users can learn analysis steps rapidly, and the second uses the entire dataset. Next, a tutorial demonstrates how to analyze the read count data to generate lists of differentially expressed genes using R/DESeq2. Additional tutorials generate read counts using the Snakemake workflow manager and Nextflow with Google Batch. All tutorials are open-source and can be used as templates for other analysis.
Keywords: RNA sequencing; analysis workflow; cloud computing; gene expression; microbial genomics; training.
© The Author(s) 2024. Published by Oxford University Press.