Sequential Separation of Essential Oil Components during Hydrodistillation of Fresh Foliage from Azorean Cryptomeria japonica (Cupressaceae): Effects on Antibacterial, Antifungal, and Free Radical Scavenging Activities

Plants (Basel). 2024 Jun 22;13(13):1729. doi: 10.3390/plants13131729.

Abstract

Cryptomeria japonica wood industry generates large amounts of foliage biomass residues. Due to the increasing applications and markets for essential oils (EOs), fresh Azorean C. japonica foliage (Az-CJF) residues are used for local EO production. Hydrodistillation (HD), a common process for obtaining EOs, also provides the possibility to fractionate them. Thus, this study evaluated the in vitro antimicrobial and antioxidant activities of six Az-CJF EO fractions (Frs. 1-6), collected at sequential HD timeframes (HDTs: 0-2, 2-10, 10-30, 30-60, 60-120, and 120-240 min), in comparison to the crude EO, obtained from a non-fractionated HD (0-240 min HDT). Antimicrobial activities were assessed via disc diffusion method against seven bacteria (foodborne and/or human pathogens) and two Penicillium spp. (phytopathogenic fungi), and antioxidant activity was estimated using DPPH and ABTS assays. Concerning the antibacterial activity, all the EO samples were effective only toward Gram-positive bacteria. Fractions 1-3 (<30 min HDT) were the most active, with growth inhibition zones (GIZ) of 7.0-23.3 mm (1.4-2.2 times higher than those of the crude EO), being Bacillus spp. (B. licheniformis and B. subtilis) the most sensitive, followed by Staphylococcus aureus and Micrococcus luteus. Regarding the antifungal activity, Frs. 1-3 also displayed the best activities, but only against P. italicum (GIZ around 9.0 mm), while the crude EO showed no antifungal activity. Overall, the best antimicrobial properties of Frs. 1-3 could be attributed, at least in part, to their highest content in α-pinene and bornyl acetate. On the other hand, Frs. 4-6 (>30 min HDT) exhibited the strongest antioxidant activities (EC50 values: 1.5-2.3 and 1.0-1.7 mg mL-1 for DPPH and ABTS, respectively), being at least 1.3-fold higher than those of the crude EO. The presence of nezukol, elemol, and eudesmol isomers could strongly contribute to the best free radical scavenging properties of Frs. 4-6. In conclusion, HD was found to be an efficient process for obtaining new Az-CJF EO fractions with variable and enhanced bioactivities due to their differential composition, as assessed using GC-MS. Hence, these findings could contribute to increasing the commercial potential of the C. japonica EO industry, namely, the Fr2 and Fr6, which presented the most significant activities and can have potential applications in the food, medical, and agriculture sectors.

Keywords: biomass residue valorization; circular economy; essential oil fractionation; high value-added products; multi-bioactivities; terpenoids.