Surgical aortic valve replacement (SAVR) is the recommended curative treatment for pure native aortic regurgitation (AR). However, some patients are not suitable for SAVR due to comorbidities or frailty. Transcatheter aortic valve replacement (TAVR) has been reported to offer a better prognosis than medical therapy in AR patients; thus, the use of TAVR for AR may increase in the future. However, the reduced calcification and annulus ring stiffness associated with TAVR may increase the risk of valve migration. Accumulating data on rescue measures in the event of valve migration is necessary. An 87-year-old female with a history of hypertension and persistent atrial fibrillation presented to our emergency department with dyspnea. The patient was diagnosed with congestive heart failure class IV, according to the New York Heart Association classification, necessitating urgent admission to our cardiac department. Due to the patient's high surgical risk (Society of Thoracic Surgeons (STS) score 9.17%, Euro2 score 9.55%, frailty 6), the heart team performed TAVR with a right femoral arterial approach. The patient was sedated, and pacing was initiated at 180 bpm. We placed an Edwards SAPIEN 3 valve (Edwards Lifesciences, Irvine, CA, USA) #23 (-1 mL volume, with attached balloon). During the post-deployment procedure, the aortic valve migrated retrogradely into the left ventricle (LV). Despite the occurrence of severe aortic valve regurgitation, the patient's vital signs remained stable. Five minutes after the migration of the aortic valve, venoarterial extracorporeal membrane oxygenation (VA-ECMO) was initiated. A second TAVR valve implantation was then performed. However, after the second valve implantation and the removal of the pre-shaped guidewire (Safari2 pre-shaped guidewire extra small, Boston Scientific, Marlborough, MA, USA), the migrated valve became stuck in the left ventricular outflow tract (LVOT) in a reverse position, resulting in severely limited left ventricular ejection. We increased the support provided by VA-ECMO, and surgical conversion to SAVR was performed without experiencing circulatory collapse. Surgical aortic valve replacement was initiated successfully, and withdrawal of the cardiopulmonary bypass (CPB) was performed without complications. The patient was extubated on the first postoperative day (POD), discharged from the ICU on POD 3, and transferred for rehabilitation on POD 27. In summary, the prompt introduction of VA-ECMO was important for avoiding complications and saving the patient's life following the retrograde migration of the TAVR valve.
Keywords: anesthesia; aortic regurgitation; transcatheter aortic valve migration; transcatheter aortic valve replacement; veno-arterial ecmo.
Copyright © 2024, Kitaura et al.