Accumulated research strongly indicates that Janus kinase 3 (JAK3) is intricately involved in the initiation and advancement of a diverse range of human diseases, underscoring JAK3 as a promising target for therapeutic intervention. However, JAK3 shows significant homology with other JAK family isoforms, posing substantial challenges in the development of JAK3 inhibitors. To address these limitations, one strategy is to design selective covalent JAK3 inhibitors. Therefore, this study introduces a virtual screening approach that combines common feature pharmacophore modeling, covalent docking, and consensus scoring to identify novel inhibitors for JAK3. First, common feature pharmacophore models were constructed based on a selection of representative covalent JAK3 inhibitors. The optimal qualitative pharmacophore model proved highly effective in distinguishing active and inactive compounds. Second, 14 crystal structures of the JAK3-covalent inhibitor complex were chosen for the covalent docking studies. Following validation of the screening performance, 5TTU was identified as the most suitable candidate for screening potential JAK3 inhibitors due to its higher predictive accuracy. Finally, a virtual screening protocol based on consensus scoring was conducted, integrating pharmacophore mapping and covalent docking. This approach resulted in the discovery of multiple compounds with notable potential as effective JAK3 inhibitors. We hope that the developed virtual screening strategy will provide valuable guidance in the discovery of novel covalent JAK3 inhibitors.
Keywords: Consensus scoring; Covalent JAK3 inhibitor; Covalent docking; Pharmacophore; Virtual screening.
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.