Interplay between MRI-based axon diameter and myelination estimates in macaque and human brain

ArXiv [Preprint]. 2024 Jul 2:arXiv:2407.02227v1.

Abstract

Axon diameter and myelin thickness are closely related microstructural tissue properties that affect the conduction velocity of action potentials in the nervous system. Imaging them non-invasively with MRI-based methods is thus valuable for studying brain microstructure and function. However, the relationship between MRI-based axon diameter and myelination measures has not been investigated across the brain, mainly due to methodological limitations in estimating axon diameters. In recent years, studies using ultra-high gradient strength diffusion MRI (dMRI) have demonstrated improved estimation of axon diameter across white-matter (WM) tracts in the human brain, making such investigations feasible. In this study, we aim to investigate relationships between tissue microstructure properties with MRI-based methods and compare the imaging findings to histological evidence from the literature. We collected dMRI with ultra-high gradient strength and multi-echo spin-echo MRI on ex vivo macaque and human brain samples on a preclinical scanner. From these data, we estimated axon diameter, intra-axonal signal fraction, myelin water fraction (MWF) and aggregate g-ratio and investigated their correlations. We found that the microstructural imaging parameters exhibited consistent patterns across WM tracts and species. Overall, the findings suggest that MRI-based axon geometry and myelination measures can provide complementary information about fiber morphology, and the relationships between these measures agree with prior histological evidence.

Publication types

  • Preprint