Background: Neck computed tomography (NCT) is essential for diagnosing suspected neck tumors and abscesses, but radiation exposure can be an issue. In conventional reconstruction techniques, limiting radiation dose comes at the cost of diminished diagnostic accuracy. Therefore, this study aimed to evaluate the effects of an AI-based denoising post-processing software solution in low-dose neck computer tomography.
Materials and methods: From 01 September 2023 to 01 December 2023, we retrospectively included patients with clinically suspected neck tumors from the same single-source scanner. The scans were reconstructed using Advanced Modeled Iterative Reconstruction (Original) at 100% and simulated 50% and 25% radiation doses. Each dataset was post-processed using a novel denoising software solution (Denoising). Three radiologists with varying experience levels subjectively rated image quality, diagnostic confidence, sharpness, and contrast for all pairwise combinations of radiation dose and reconstruction mode in a randomized, blinded forced-choice setup. Objective image quality was assessed using ROI measurements of mean CT numbers, noise, and a contrast-to-noise ratio (CNR). An adequately corrected mixed-effects analysis was used to compare objective and subjective image quality.
Results: At each radiation dose level, pairwise comparisons showed significantly lower image noise and higher CNR for Denoising than for Original (p < 0.001). In subjective analysis, image quality, diagnostic confidence, sharpness, and contrast were significantly higher for Denoising than for Original at 100 and 50 % (p < 0.001). However, there were no significant differences in the subjective ratings between Original 100 % and Denoising 25 % (p = 0.906).
Conclusions: The investigated denoising algorithm enables diagnostic-quality neck CT images with radiation doses reduced to 25% of conventional levels, significantly minimizing patient exposure.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.