Pork, an important component of human nutrition worldwide, contributes considerably to anthropogenic nitrogen and greenhouse gas emissions. Reducing the environmental impact of pig production is therefore essential. This can be achieved through system-level strategies, such as optimising resource use, improving manure management and recycling leftovers from human food production, and at the individual animal level by maintaining pig health and fine-tuning dietary protein levels to individual requirements. Breeding, coupled with nutritional strategies, offers a lasting solution to improve nitrogen use efficiency (NUE) - the ratio of nitrogen retained in the body to nitrogen ingested. With a heritability as high as 0.54, incorporating NUE into breeding programmes appears promising. Nitrogen use efficiency involves multiple tissues and metabolic processes, and is influenced by the environment and individual animal characteristics, including its genetic background. Heritable genetic variation in NUE may therefore occur in many different processes, including the central nervous regulation of feed intake, the endocrine system, the gastrointestinal tract where digestion and absorption take place, and the composition of the gut microbiome. An animal's postabsorptive protein metabolism might also harbour important genetic variation, especially in the maintenance requirements of tissues and organs. Precise phenotyping, although challenging and costly, is essential for successful breeding. Various measurement techniques, such as imaging techniques and mechanistic models, are being explored for their potential in genetic analysis. Despite the difficulties in phenotyping, some studies have estimated the heritability and genetic correlations of NUE. These studies suggest that direct selection for NUE is more effective than indirect methods through feed efficiency. The complexity of NUE indicates a polygenic trait architecture, which has been confirmed by genome-wide association studies that have been unable to identify significant quantitative trait loci. Building sufficiently large reference populations to train genomic prediction models is an important next step. However, this will require the development of truly high-throughput phenotyping methods. In conclusion, breeding pigs with higher NUE is both feasible and necessary but will require increased efforts in high-throughput phenotyping and improved genome annotation.
Keywords: Environmental impact; Nitrogen pollution; Nitrogen use efficiency; Nutrition; Sustainable pig breeding.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.