Rational correction of pathogenic conformational defects in HTRA1

Nat Commun. 2024 Jul 16;15(1):5944. doi: 10.1038/s41467-024-49982-8.

Abstract

Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.

MeSH terms

  • Animals
  • Brain / metabolism
  • Brain / pathology
  • HEK293 Cells
  • High-Temperature Requirement A Serine Peptidase 1* / genetics
  • High-Temperature Requirement A Serine Peptidase 1* / metabolism
  • Humans
  • Loss of Function Mutation
  • Mice
  • Mutation
  • Protein Conformation
  • Protein Multimerization

Substances

  • High-Temperature Requirement A Serine Peptidase 1
  • HTRA1 protein, human
  • HtrA1 protein, mouse